Math 25
Fall 2017
Lecture 6


The table below gives the cost to the vendor and the selling price for each item.

|  | $H B$ | $H D$ | Solas |
| :--- | :---: | :---: | :---: |
| Cost | $\$ 2$ | $\$ 4$ | $\$ 1$ |
| Selling Price | $\$ 4$ | $\$ 5$ | $\$ 2$ |

The vendor sold a total of 150 items spent $\$ 250$, made $\$ 440$ in revenue. How many of each?

$$
\begin{aligned}
& x \rightarrow H B \\
& y \rightarrow H D \\
& z \rightarrow \text { Solas }
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+y+z=150 \\
2 x+4 y+1 z=250 \\
4 x+5 y+2 z=440
\end{array}\right. \\
& \text { (1) Matrices } \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 4 & 1 \\
4 & 5 & 2
\end{array}\right][ } \\
& \text { Let's look for } A^{-1} \\
& {\left[\begin{array}{lll:lll}
1 & 1 & 1 & 1 & 0 & 0 \\
2 & 4 & 1 & 0 & 1 & 0 \\
4 & 5 & 2 & 0 & 0 & 1
\end{array}\right]} \\
& \text { A } x=b \\
& x=A^{-1} b \\
& (-2) R 1+R 2 \rightarrow R 2 \\
& (-4) R 1+R 3 \rightarrow R 3
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc:ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 2 & -1 & -2 & 1 & 0 \\
0 & 1 & -2 & -4 & 0 & 1
\end{array}\right]}
\end{aligned} \rightarrow\left[\begin{array}{ccc:c}
R 2 & 1 & 1 & 1: 1 \\
1 & 0 & 0 \\
0 & 1 & -2 & -4 \\
0 & 0 & 1 \\
0 & 2 & -1 & -2 \\
1 & 0
\end{array}\right]
$$

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
1 & 0 & 0:-1 & -1 & 1 \\
0 & 3 & -6:-12 & 0 & 3 \\
0 & 0 & 6: 12 & 2 & -4
\end{array}\right] \rightarrow\left[\begin{array}{ccc:ccc}
1 & 0 & 0 & -1 & -1 & 1 \\
0 & 3 & 0 & 0 & 2 & -1 \\
0 & 0 & 6 & 12 & 2 & -4
\end{array}\right]} \\
R 2 \div 3 \rightarrow R 2, R 3 \div 6 \rightarrow R 3 \\
{\left[\begin{array}{ccccc}
1 & 0 & 0 & -1 & -1 \\
0 & 1 & 0 & 0 & \frac{2}{3} \\
0 & 0 & 1 & \frac{-1}{3} \\
0 & 1 & \frac{1}{3} & \frac{-2}{3}
\end{array}\right] \Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
0 & \frac{2}{3} & \frac{-1}{3} \\
2 & 1 / 3 & -2 / 3
\end{array}\right]\left[\begin{array}{l}
150 \\
250 \\
0
\end{array}\right]}
\end{gathered}
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
0 & \frac{2}{3} & -\frac{1}{3} \\
2 & 1 / 3 & -2 / 3
\end{array}\right]\left[\begin{array}{l}
150 \\
3 \times 3 \\
250 \\
4400
\end{array}\right]=\left[\begin{array}{c}
-1 \cdot 150-1 \cdot 250+1 \cdot 440 \\
0 \cdot 150+\frac{2}{3} \cdot 250-\frac{1}{3} \cdot 400 \\
2 \cdot 150+\frac{1}{3} \cdot 250-\frac{2}{3} 400
\end{array}\right]=\left[\begin{array}{l}
40 \\
3 \times 1
\end{array}\right]} \\
& \frac{500}{3}-\frac{440}{3}=\frac{60}{3}=20 \quad \begin{cases}40 & H B \\
20 & H D \\
50 & \text { Sodas }\end{cases} \\
& 300+\frac{250}{3}-\frac{880}{3} \\
& =300-\frac{630}{3}=300-210=90
\end{aligned}
$$

find the determinant of the coef. matrix for the system given below:

$$
\begin{aligned}
& \left\{\begin{array}{l}
x+2 y-3 z=10 \\
3 x-y+4 z=-5 \\
4 x+y+z=5
\end{array} \quad\left[\begin{array}{ccc}
1 & 2 & -3 \\
3 & -1 & 4 \\
4 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
10 \\
-5 \\
5
\end{array}\right]\right. \\
& \left.\begin{array}{|cc|}
\hline 1 & 2 \\
3 & -1
\end{array} \right\rvert\, \\
& 4
\end{aligned}
$$

Expand by firstrow

$$
=1(-1-4)-2(3-16)-3(3--4)=-5+26-21=0
$$

Since $A$, the coff. matrix, has the deft. value of $0,|A|=0$, then $A^{-1}$ does not exist.

So to solve the system, we cannot use matrix method.

Also we can use Cramer's rule. The system may have no Solution or infinitely many Solutions.

